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Abstract. In this paper, an intuitive approach is employed to generalize the full separability criterion of
tripartite quantum states of qubits to the higher-dimensional systems [Phys. Rev. A 72, 022333 (2005)]. A
distinct characteristic of the present generalization is that less restrictive conditions are needed to charac-
terize the properties of full separability. Furthermore, the formulation for pure states can be conveniently
extended to the case of mixed states by utilizing the Kronecker product approximate technique. As ap-
plications, we give the analytic approximation of the criterion for weakly mixed tripartite quantum states
and investigate the full separability of some weakly mixed states.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 03.67.Mn Entanglement production, characterization, and manipulation

QICS. 03.02.+s Separability properties – 03.05.+c Characterization and classification of entanglement –
03.10.+m Entanglement measures

1 Introduction

Entanglement, as an essential ingredient of quantum in-
formation theory, has been an important physical resource
for a lot of quantum protocols, such as quantum compu-
tation [1], quantum cryptography [2], quantum teleporta-
tion [3], quantum dense coding [4] and so on. Recently,
many efforts have been made to characterize the quanta-
tively properties of entanglement [5–8], however, the good
understanding is only restricted to low-dimensional sys-
tems. The quantification of entanglement for higher di-
mensional systems and multipartite quantum systems
remains an open question.

Since Coffman et al. [9] introduced the so called resid-
ual entanglement on the basis of concurrence [5], the
investigation of multipartite entanglement has attracted
much attention. For example, Dür et al. have considered
the classification of entanglement for tripartite systems
of qubits [10]; Miyake [11] has given the classification
for multipartite systems based on the hyperdeterminant.
On the basis of the different classes of multipartite en-
tanglement, the corresponding entanglement monotones
can be given [11,12]. Some quantities have also presented
to characterize the properties of entanglement by collect-
ing the contributions of the entanglements of different
classes [13,14]. One can note that the quantities intro-
duced in references [13,14] can also characterize the full
separability of a pure multipartite state. However it is
easily found that construction of these quantities requires
more restrictive conditions. Even though some conditions
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may be repeated, it is usually not easy to exclude the
repeated ones, especially for high-dimensional systems.
Hence, it will reduce the efficiency of calculation to some
extent.

Considering the full separability criterion introduced
in reference [15], which can effectively reduce the restric-
tive conditions to some extent, in this paper, we will gen-
eralize the criterion to high-dimensional systems by an
intuitive approach. The generalized full separability crite-
rion for pure states can be conveniently extended to the
case of mixed states by utilizing the Kronecker product
approximate technique which can usually further reduce
restrictive conditions. As applications, we give the analytic
approximation of the criterion for weakly mixed tripartite
quantum states and study the full separability of some
weakly mixed states. The paper is organized as follows.
Firstly, we give the intuitive generalization of the sepa-
rability criterion for pure states; secondly, we extend it
to mixed states and discuss the full separability of some
quasi pure states; the conclusions are drawn in the end.

2 Full separability criterion for tripartite pure
states

At first, let us recall the full separability criterion for tri-
partite pure states of qubits given in reference [15]. A tri-
partite pure state |ψ〉ABC denoted by a vector in 2×2×2
dimensional Hilbert space,

|ψ〉 = (a000, a001, a010, a011, a100, a101, a110,a111)T ,
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with the superscript T denoting transpose, is fully sepa-
rable, if and only if

C(|ψ〉) = |C(|ψ〉)| =
√∑

α

|Cα|2 = 0, (1)

here the vector C(ψ) =
9⊕

α=1
Cα with Cα = 〈ψ∗| sα |ψ〉,

where the star denotes complex conjugation, and

s1=−σy⊗σy⊗I1, s2=−σy⊗σy⊗I2, s3=−σy⊗I1⊗σy, (2)

s4=−σy⊗I2⊗σy, s
5=−I1⊗σy⊗σy, s

6=−I2⊗σy⊗σy, (3)

s7=−σx⊗σy⊗σy, s
8=−σy⊗σx⊗σy, s

9=−σy⊗σy⊗σx,
(4)

with

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, I1 =

(
1 0
0 0

)

and

I2 =
(

0 0
0 1

)
.

As mentioned in reference [15], a tripartite pure state of
qubits can be considered as a tensor cubes. Directly, a tri-
partite higher-dimensional pure state can naturally con-
sidered as a tensor grid which includes tensor cubes. E.g.
let |φABC〉 =

∑1
i,j=0

∑2
k=0 aijk |ijk〉ABC , the tensor grid

of |φABC〉 can be pictured as two adjoining cubes, which
includes three tensor cubes. In this sense, one can draw a
conclusion that tensor cube can be regarded as the unit of
tensor grid. Since every tensor cube in a tensor grid can
be considered as an non-normalized tripartite pure state
of qubits, one can get that every unit corresponds to a
C defined in equation (1). Therefore, the tensor cube can
also be considered as a unit which describes the full sep-
arability of a tripartite higher-dimensional pure state. In
other words, the full separability of the given tripartite
higher-dimensional pure state can be described by the full
separability of the non-normalized tripartite pure state of
qubits.

Theorem 1. For any a tripartite pure state |χ〉 which
includes M non-normalized tripartite pure states of qubits
(tensor cubes mentioned above), let the non-normalized
pure state of qubits corresponding to the ith cube be de-
noted by |ϕi〉, one can obtain the corresponding C (|ϕi〉).
Define

C(|χ〉) =

√√√√ M∑
i=1

C2 (|ϕi〉), (5)

for the state |χ〉, then |χ〉 is fully separable, if and only if
F (|χ〉) = 0.

Proof. It is obvious that C(|χ〉) = 0 means that
C (|ϕi〉) = 0 holds for all ϕi, vice versa. Since the ten-
sor cube corresponds to the unit of describing full sepa-
rability, C(|χ〉) = 0 shows that there does not exist any
entanglement in |χ〉. That is to say, the tripartite quan-
tum state |χ〉 is fully separable. In other words, since ev-
ery non-normalized ϕi is fully separable, one can obtain

that every group of parallel lines of the tensor grid is lin-
early dependent. I.e. the state that the grid denotes is fully
separable [15]. On the contrary, if |χ〉 is fully separable,
C (|ϕi〉) = 0, i.e. C(|χ〉) = 0.

Considering the matrix notation of

|χ〉 =
n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

aijk |ijk〉 ,

C(|χ〉) can be expressed as the function of |χ〉, i.e.

C(|χ〉) =

√√√√ N1∑
α=1

N2∑
β=1

N3∑
γ=1

C2 ((sα ⊗ sβ ⊗ sγ) |χ〉), (6)

where Np = np(np−1)
2 with p = 1, 2, 3; sq, q = α, β, γ,

denotes 2 × np matrix with p corresponding to q. If the
generator of the group SO(np) is denoted by Sp, sq can
be derived from |Sp| by deleting the row where all the
elements are zero, where | | denotes the absolute value of
the matrix elements.

According to equation (1), equation (6) can be ex-
panded by

C(|χ〉) =

√√√√ N1∑
α=1

N2∑
β=1

N3∑
γ=1

9∑
δ=1

|Cδ ((sα ⊗ sβ ⊗ sγ) |χ〉)|2

=

[
N1∑

α=1

N2∑
β=1

N3∑
γ=1

9∑
δ=1

(〈χ∗|ST
αβγs

δSαβγ |χ〉

× 〈χ|ST
αβγs

δSαβγ |χ∗〉)
]1/2

, (7)

where Sαβγ = sα ⊗ sβ ⊗ sγ , sδ are defined by equa-
tions (2–4), and the superscript T denotes transposition
operation.

3 Full separability criterion for mixed states

On the basis of C(|χ〉) for pure states, the corresponding
quantity C(ρ) for mixed states ρ defined in Cd×d(d = n1×
n2 × n3) is then given as the convex of

C(ρ) = inf
∑

i

piC(|Ψi〉) (8)

of all possible decompositions into pure states |Ψi〉 with

ρ =
∑

i

pi |Ψi〉 〈Ψi| , pi ≥ 0. (9)

C(ρ) vanishes if and only if ρ is fully separable. Substitute
equation (7) into equation (8), one can get

C(ρ) = inf
U

∑
i

pi

⎡
⎣ N1∑

α=1

N2∑
β=1

N3∑
γ=1

9∑
δ=1

∣∣Cδ (Sαβγ |Ψi〉)
∣∣2
⎤
⎦

1/2

.

(10)
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It is obvious that if the infimum of equation (10) can be
provided, one can obtain a sufficient and necessary con-
dition of separability for mixed states. However, it seems
to be impossible for higher-dimensional systems. One can
only give a lower bound as a necessary condition. There-
fore, a lower bound with strong sufficiency or convenient
for calculations is expected.

According to the matrix notation [7] of equation (9),
one can obtain ρ = ΨWΨ †, where W is a diagonal matrix
with Wii = pi, the columns of the matrix Ψ correspond
to the vectors |Ψi〉. Due to the eigenvalue decomposition:
ρ = ΦMΦ†, where M is a diagonal matrix whose diagonal
elements are the eigenvalues of ρ, and Φ is a unitary matrix
whose columns are the eigenvectors of ρ, one can obtain
ΨW 1/2 = ΦM1/2U , where U ∈ Cr′×N is a Right-unitary
matrix, with N and r′ being the column number of Ψ and
the rank of ρ. Therefore, based on the matrix notation,
equation (10) can be rewritten as

C(ρ) � inf
U

√ ∑
α,β,γ,δ

∣∣∣UTM1/2ΦTST
αβγs

δSαβγΦM1/2U
∣∣∣2
ii

= inf
U

{ ∑
α,β,γ,δ

[(
UTM1/2ΦTST

αβγs
δSαβγΦM

1/2U
)

×
(
U †M1/2Φ†ST

αβγs
δSαβγΦ

∗M1/2U∗
)]

ii

}1/2

,

(11)

where the Minkowski inequality

∑
m

pm

√∑
n

x2
mn �

√√√√∑
n

(∑
m

pmxmn

)2

is used. According to reference [7], one can di-
rectly obtain a lower bound of C(ρ) as max

z
[λ̃1(z) −∑

i>1 λ̃i(z)], where λ̃j(z) are the singular values of∑I
j=1 zjM

1/2ΦTST
αβγs

δSαβγΦM
1/2 in decreasing order

with z = [z1, z2, . . . , zI ] a group of optimal complex
parameters. It can be easily found that the number of
optimal parameters (I = 9N1N2N3) is too large to be
conveniently used to calculations for higher-dimensional
systems yet. However, it will be found that by Kronecker
product approximation technique, not only might the
number of optimal parameters be further reduced, but
also one can calculate the lower bound in different approx-
imation degrees. In particular, we can provide an analytic
approximation for weakly mixed states.

In fact, if replacing “×” of equation (11) by “⊗”, equa-
tion (11) can be rewritten as

C(ρ) ≥ inf
U

{ ∑
α,β,γ,δ

[(
UTM1/2ΦTST

αβγs
δSαβγΦM

1/2U
)

⊗
(
U †M1/2Φ†ST

αβγs
δSαβγΦ

∗M1/2U∗
)]ii

ii

}1/2

= inf
U

{[(
UT ⊗ U †)A (U ⊗ U∗)

]ii
ii

}1/2

, (12)

where

A =
∑

α,β,γ

9∑
δ=1

(
ρ1/2
)T

ST
αβγΣ

δSαβγ

(
ρ1/2
)
, (13)

defined in Cd×d⊗Cd×d, and ρ1/2 =
(
ΦM1/2

)⊗(ΦM1/2
)∗

,
Σδ = sδ ⊗ sδ, Sαβγ = Sαβγ ⊗ Sαβγ . The other indices
in above equation are all defined the same as previous
sections. Even though the value of equation (11) is not
changed, the implied meaning is quite different, which
means that we have copied the given quantum state in
a conjugate Hilbert space and we consider the separabil-
ity of the state in a doubled Hilbert space. The distinct
advantage is that equation (12) allows us to employ the
Kronecker product approximation technique [16,17].

Next we will employ the Kronecker product approxi-
mation technique on A to derive a lower bound of equa-
tion (12). Based on the technique, A should be con-
verted [19] into Ã by

Ã = V12(AV12)T2 ,

where the superscript T2 denotes partial transposition on
the second subspace [18], V12 is swap operator [19] de-
fined as

V12 =
∑

ikj′k′
δjk′δj′k |j〉 〈j′| ⊗ |k〉 〈k′| ,

j, k′ = 1, . . . , d, j′, k = 1, . . . , d.

Ã has the singular value decomposition:

Ã = UΣV † =
r∑

i=1

σiuiv
†
i , (14)

where ui, vi are the ith columns of the unitary matrices U
and V , respectively; Σ is a diagonal matrix with elements
σi decreasing for i = 1, . . . , r; r is the rank of Ã. Thus,
based on references [16,17] A can always be written by

A =
r∑
i

Ai ⊗ Bi =
r∑
i

σiA′
i ⊗ B′

i,

where Vec(Ai) =
√
σiui and Vec(Bi) =

√
σiv

∗
i . For any a

p× q matrix M = [mij ] with entries mij [20], Vec(M) is
defined by

Vec(M) =

[m11, . . . ,mp1,m12, . . . ,mp2, . . . ,m1q, . . . ,mpq]T . (15)
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One can find from equation (13) that if the two subspace
that A is defined in is exchanged, A will converted into
A∗, hence one has Bi = A∗

i , i.e.

A =
r∑
i

Ai ⊗A∗
i =

r∑
i

σiA′
i ⊗A′∗

i . (16)

Substitute equation (16) into equation (12), equation (12)
can be given by

C(ρ) ≥ inf
U

N∑
i

r∑
j=1

∣∣(UTAjU
)
ii

∣∣2 . (17)

The infimum can be employed to test the full separability
of ρ.

In terms of the Cauchy-Schwarz inequality(∑
i

x2
i

)1/2 (∑
i

y2
i

)1/2

�
∑
i

xiyi and
∑

i |xi| ≥ |∑i xi|,
C(ρ) given by equation (17) can arrive at

C(ρ) ≥ inf
U

N∑
i

∣∣∣∣∣∣UT

⎛
⎝ r∑

j=1

zjAj

⎞
⎠U
∣∣∣∣∣∣
ii

, (18)

where zj = xj exp(iφj), with xj ≥ 0,
∑

j x
2
j = 1.

Therefore the infimum of equation (18) can be given
by max

z
[λ1(z) −

∑
i>1 λi(z)], where λj(z) are the singu-

lar values of
(∑r

j=1 zjAj

)
in decreasing order [7], with

z = [z1, z2, . . . , zr]. Note that r ≤ d2 is usually much
smaller than d2 in practical calculations. In particular, one
can consider different numbers of σj in decreasing order
and correspondingly introduce optimal parameters, which
will might provide approximate lower bounds in different
degrees. In this sense, the number of optimal parameters
can be dramatically reduced. In fact, it is very possible
that Aj corresponding to the maximal σj can give the
main contribution [8] to the infimum of equation (18).
That is to say the lower bound of C(ρ) can be given by
λ1 −∑i>1 λi with λj the singular values of Aj , which is
an analytic approximation.

For weakly mixed states i.e. quasi pure states, an an-
alytic approximation of C(ρ) can also be introduced [21].
According to equation (13) and Kronecker approximation
technique, A can also be given in the following way

Alm
l′m′ =

∑
α,β,γ

9∑
δ=1

√
ulul′umum′

× (〈Ψ∗
l |ST

αβγs
δSαβγ |Ψl′〉 〈Ψm|ST

αβγs
δSαβγ |Ψ∗

m′〉) , (19)

where Ψα and uα denote the αth eigenvector and eigen-
value, and all the other quantities are defined similar to
those in equation (7). According to the symmetry of A
given by equation (16) and the Kronecker product ap-
proximation technique in above section, A can be formally
written as

Alm
l′m′ =

∑
α

Tα
lm (Tα

l′m′)∗ .

The density matrix of quasi pure states has one single
eigenvalue µ1 that is much larger than all the others, which
induces a natural order in terms of the small eigenval-
ues µi, i > 1. Due to the same reasons to those in refer-
ence [21], here we consider the second order elements of
type Alm

11 . Therefore, one can have the approximation

Alm
l′m′ 	 τlmτ

∗
l′m′ with τlm =

Alm
11√
A11

11

.

In this sense, equation (18) can be simplified significantly:

C(ρ) 	 Ca(ρ) = inf
U

∑
i

∣∣UT τU
∣∣
ii
.

Ca(ρ) can be given by

Ca(ρ) = max

{
λ1 −

∑
i>1

λi, 0

}
,

where λi is the singular value of τ in decreasing order.
Consider two (2 × 2 × 3)-dimensional quasi pure states

constructed respectively by

ρ1(x) = x |GHZ ′〉 〈GHZ ′| + (1 − x)112

and
ρ2(x) = x |W ′〉 〈W ′| + (1 − x)112,

where

|GHZ ′〉 =
1
2
(|000〉 + |101〉+ |011〉+ |112〉),

and
|W ′〉 =

1√
3

(|000〉+ |011〉+ |112〉) .

Note that |GHZ ′〉 and |W ′〉 given in reference [11] corre-
spond to GHZ class and W class with high local rank, re-
spectively. The two states can be considered as quasi pure
states for x ≥ 0.3. By the calculation, one can find that
Ca(ρ1) and Ca(ρ2) are both nonzero. What is more, for the
quasi pure states generated by the mixture of maximally
mixed state (identity matrix) and tripartite GHZ state
in 3 × 3 × 3 dimension, the corresponding Ca(ρ)s can all
be shown to be nonzero for x ≥ 0.3. We also study some
(2 × 2 × 3)-dimensional quasi pure states ρ by the mix-
ture of maximally mixed state and random semiseparable
pure states generated by Matlab, numerical results show
that Ca(ρ) are nonzero if ρ are strict quasi pure states.
All above show the sufficiency of our criterion for testing
the entanglement of high-dimensional mixed systems.

4 Conclusion and discussion

In summary, we have utilized an intuitive approach to
generalize the criterion to high-dimensional tripartite sys-
tems. The generalized criterion for pure states can be con-
veniently extended to the case of mixed states by utilizing
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the Kronecker product approximate technique. The lower
bound for mixed states can provide necessary conditions
to test the full separability. Compared with the previous
criteria, the criterion introduced here can effectively re-
duce the restrictive conditions. However, the criterion is
not an entanglement monotone. Numerical results show
that our criterion for high-dimensional systems is even
sufficient condition of full separability for strict quasi pure
states.

This work was supported by the National Natural Sci-
ence Foundation of China, under Grant Nos. 10575017 and
60472017.
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